$$\newcommand{\n}{\hat{n}}\newcommand{\w}{\hat{\omega}}\newcommand{\wi}{\w_\mathrm{i}}\newcommand{\wo}{\w_\mathrm{o}}\newcommand{\wh}{\w_\mathrm{h}}\newcommand{\Li}{L_\mathrm{i}}\newcommand{\Lo}{L_\mathrm{o}}\newcommand{\Le}{L_\mathrm{e}}\newcommand{\Lr}{L_\mathrm{r}}\newcommand{\Lt}{L_\mathrm{t}}\newcommand{\O}{\mathrm{O}}\newcommand{\degrees}{{^{\large\circ}}}\newcommand{\T}{\mathsf{T}}\newcommand{\mathset}[1]{\mathbb{#1}}\newcommand{\Real}{\mathset{R}}\newcommand{\Integer}{\mathset{Z}}\newcommand{\Boolean}{\mathset{B}}\newcommand{\Complex}{\mathset{C}}\newcommand{\un}[1]{\,\mathrm{#1}}$$

I did a bunch of testing in github (the readme) and under marked-cli. Overally KaTeX is promising but might still be missing too many features. It seems to be rendering newlines wrong, they are not wrapping. Though, this could be some failure specific to marked-cli. So, I figure I might as well go for broke and test markdeep's math rendering.

The result? Not too bad but some of the math here are rendering some pretty weird stuff.

   

Tests

When \(a \ne 0\), there are two solutions to \((ax^2 + bx + c = 0)\) and they are $$x = {-b \pm \sqrt{b^2-4ac} \over 2a}$$

$$ \[\begin{aligned} y &= \frac{1}{3} r^3 \\ \therefore \frac{dy}{dr} &= \frac{1}{3} 3 r^{3-1} \\ \frac{dy}{dx} &= r^2 \\ \therefore dy &= r^2 \cdot dr = r \cdot dr \cdot r \end{aligned}\] $$

$$ \begin{equation} e^{\pi i} + 1 = 0 \end{equation} $$

The beautiful equation \(\ref{eu_eqn}\) is known as the Euler equation.

$$ \begin{align*} x&=y & w &=z & a&=b+c\\ 2x&=-y & 3w&=\frac{1}{2}z & a&=b\\ -4 + 5x&=2+y & w+2&=-1+w & ab&=cb \end{align*} $$

$$ \begin{CD} A @>a>> B \\ @VbVV @AAcA \\ C @= D \end{CD} $$

something \(\overbrace{a+b+c}^{\text{note}}\) or other

abc $$ \mathbf{P} = \begin{pmatrix} 3 & 1 \\ 2 & 4 \end{pmatrix} $$ def

abc \(\mathbf{P} = \begin{pmatrix} 3 & 1 \\ 2 & 4 \end{pmatrix}\) def